ἄρα ὡς ἁ ΒΓ ποτὶ τὰν ΒΙ μάκει οὕτως ἁ ΒΓ ποτὶ τὰν ΒΘ δυνάμει. ἀνάλογον ἄρα ἐντὶ αἱ ΒΓ, ΒΘ, ΒΙ γραμμαί. Ὥστε τὸν αὐτὸν ἔχει λόγον ἁ ΒΓ ποτὶ τὰν ΒΘ, ὃν ἁ ΓΘ ποτὶ τὰν ΘΙ. ἔστιν ἄρα ὡς ἁ ΓΔ ποτὶ τὰν ΔΖ, οὕτως ἁ ΘΖ ποτὶ τὰν ΘΗ. τᾷ δὲ ΔΓ ἴσα ἐστὶν ἁ ΔΑ. δῆλον οὖν ὅτι τὸν αὐτὸν ἔχει λόγον ἁ ΔΑ ποτὶ τὰν ΔΖ, ὃν ἁ ΖΘ ποτὶ τὰν ΘΗ.
Ἔστω τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς τὸ ΑΒΓ, καὶ ἄχθω ἀπὸ τοῦ Α παρὰ τὰν διάμετρον ἁ ΖΑ, ἀπὸ δὲ τοῦ Γ ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς κατὰ τὸ Γ ἁ ΓΖ. εἰ δή τις ἀχθείη ἐν τῷ ΖΑΓ τριγώνῳ παρὰ τὰν ΑΖ, τὸν αὐτὸν λόγον ἁ ἀχθεῖσα τετμήσεται ὑπὸ τᾶς τοῦ ὀρθογωνίου κώνου τομᾶς καὶ ἁ ΑΓ ὑπὸ τᾶς ἀχθείσας [ἀνάλογον]. ὁμόλογον δὲ ἐσσεῖται τὸ τμᾶμα τᾶς ΑΓ τὸ ποτὶ τῷ Α τῷ τμάματι τᾶς ἀχθείσας τῷ ποτὶ τῷ Α.
ἄχθω γάρ τις ἁ ΔΕ παρὰ τὰν ΑΖ, καὶ τεμνέτω πρῶτον ἁ ΔΕ τὰν ΑΓ δίχα. ἐπεὶ οὖν ἐστιν ὀρθογωνίου κώνου τομὰ ἁ ΑΒΓ καὶ ἀγμένα ἁ ΒΔ παρὰ τὰν διάμετρον, αἱ δὲ ΑΔ, ΔΓ ἴσαι, ἐσσεῖται τᾷ ΑΓ παράλληλος ἁ κατὰ τὸ Β ἐπιψαύουσα τᾶς τοῦ ὀρθο-